In vivo estimation of light scattering and absorption properties of rat brain using a single-reflectance fiber probe during cortical spreading depression.

نویسندگان

  • Izumi Nishidate
  • Chiharu Mizushima
  • Keiichiro Yoshida
  • Satoko Kawauchi
  • Shunichi Sato
  • Manabu Sato
چکیده

Diffuse reflectance spectroscopy using a fiber optic probe is a promising technique for evaluating the optical properties of biological tissue. We herein present a method for determining the reduced scattering coefficient, μ's, the absorption coefficient, μa, and the tissue oxygen saturation, StO2, of in vivo brain tissue using a single-reflectance fiber probe with two source-collector geometries. We performed in vivo recordings of diffuse reflectance spectra and of the electrophysiological signals for exposed rat brain during the cortical spreading depression evoked by the topical application of KCl. The time courses of μa at 500, 570, and 584 nm indicated the hemodynamic change in the cerebral cortex as well as StO2. At 570 nm, the time course of μ's was well correlated with that of μa, which also reflects the scattering by RBCs. On the other hand, increases in μ's at 500 and 584 nm and a decrease in μ's at 800 nm were observed before the profound increase in μa, and these occurrences were synchronized with the negative dc shift of the local field potential. The resultant change in the slope of μ's ðλÞ is indicative of the morphological changes in the cellular and subcellular structures induced by the depolarization due to the temporal depression of the neuronal bioelectrical activity. The results of the present study indicate the potential application of the proposed method in evaluating the pathophysiological conditions of in vivo brain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Neuroprotective Effects of Long-Term Repetitive Transcranial Magnetic Stimulation on the Cortical Spreading Depression-induced Damages in Rat’s Brain

Introduction: Cortical Spreading Depression (CSD) is a propagating wave of neural and glial cell depolarization with important role in several clinical disorders. Repetitive Transcranial Magnetic Stimulation (rTMS) is a potential tool with preventive treatment effects in psychiatric and neuronal disorders. In this paper, we study the effects of rTMS on CSD by using behavioral and histological a...

متن کامل

P 23: Apoptosis Following Cortical Spreading Depression in Juvenile Rats

Introduction: Repetitive cortical spreading depression (CSD) can lead to cell death in immature brain tissue. Caspases are involved in neuronal cell death in several CSD-related neurological disorders. Yet, whether repetitive CSD itself can induce caspase activation in adult or juvenile tissue remains unknown. Inducing repetitive CSD in somatosensory cortices of juvenile and adult rats in vivo,...

متن کامل

Temporo-Spectral Imaging of Intrinsic Optical Signals during Hypoxia-Induced Spreading Depression-Like Depolarization

Spreading depression (SD) is characterized by a sustained near-complete depolarization of neurons, a massive depolarization of glia, and a negative deflection of the extracellular DC potential. These electrophysiological signs are accompanied by an intrinsic optical signal (IOS) which arises from changes in light scattering and absorption. Even though the underlying mechanisms are unclear, the ...

متن کامل

Improving Colorant Absorption from Pistachio Hulls on Wool Fiber Using Protease Enzyme

Nowadays, textile processing based on biotechnology has gained its importance in the view of stringent environmental and industrial safety conditions. The use of protease enzymes in protein fibers to improve some physical and mechanical properties is particularly interesting. In this research, wool yarns were first treated with different concentrations of protease enzymes in aqueous solution in...

متن کامل

In vivo local determination of tissue optical properties: applications to human brain.

Local and superficial near-infrared (NIR) optical-property characterization of turbid biological tissues can be achieved by measurement of spatially resolved diffuse reflectance at small source-detector separations (<1.4 mm). However, in these conditions the inverse problem, i.e., calculation of localized absorption and the reduced scattering coefficients, is necessarily sensitive to the scatte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomedical optics

دوره 20 2  شماره 

صفحات  -

تاریخ انتشار 2015